HVAC Hacks – Module 6: Climate Control with Air Handling Units – Essential Tips & Rules of Thumb – M08-022

1 CHAPTER -1: INTRODUCTION TO AIR HANDLING UNITS

An Air Handling Unit (AHU) conditions and circulates air in a building. Its primary functions include:

- a. Regulates temperature and humidity.
- b. Provides ventilation with fresh outdoor air.
- c. Filters contaminants for clean air.
- d. Delivers conditioned air through ducts.
- e. Maintains room pressure differentials.

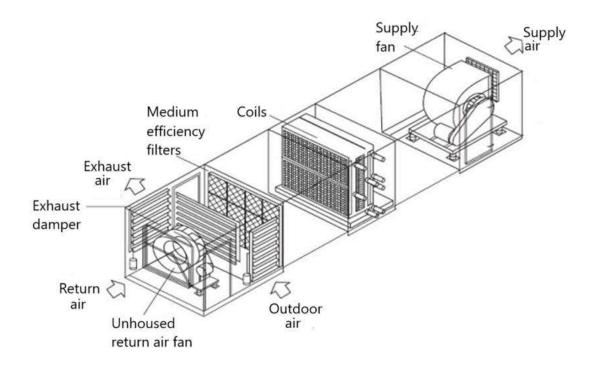
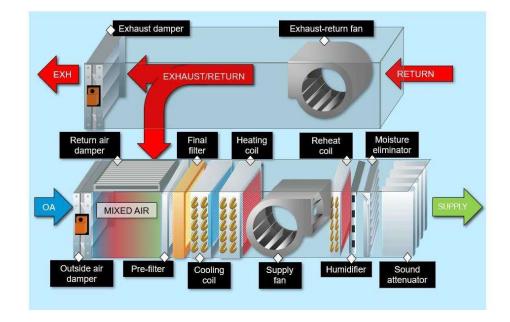



Figure 1. Air Handling Unit

1.1 Description: Key Components and Functions

An AHU is an enclosure with fans, filters, coils, and dampers.

Figure 2. Key Components of an AHU

Components	Function	Typical Details			
Fan	Circulates air within the AHU and	Type: Centrifugal or Plug Fan;			
	throughout the facility.	Capacity: Airflow volume (CFM)			
		or Tonnage; Speed Control: VSD			
Heating/Cooling Coils	Controls air temperature by	Type: Finned Tube Coil;			
	transferring heat.	Material: Copper, Aluminum, or			
		Stainless Steel; Capacity:			
		BTU/hr.			
Filters	Removes airborne contaminants	Type: Pre-filters, Fine Filters,			
	and maintains air quality.	HEPA Filters; Efficiency: MERV			
		rating; Pressure Drop: Resistance to airflow.			
Humidifiers/Dehumidifiers	Controls and adjusts air humidity	Type: Steam, Spray, or Adiabatic;			
	levels.	Capacity: Moisture addition or			
		removal rate (lbs./hr.); Control:			
		Humidistat or Controller			
Mixing Chamber	Mixes return and fresh air for	Design: Plenum Chamber or			
	desired conditions.	Mixing Box; Airflow Ratio:			
		Proportion of return and fresh air			

HVAC Hacks – Module 6: Climate Control with Air Handling Units – Essential Tips & Rules of Thumb – M08-022

	Components	Function	Typical Details		
	Air Distribution	Distributes conditioned air to	Ductwork: Supply and Return		
		different areas.	Ducts; Dampers: Balancing and		
			Volume Control; Registers:		
			Diffusers and Grilles		
	Controls	Monitors and regulates AHU	Sensors: Temperature, Humidity,		
$\mathbf{\nabla}$		operation. Pre	Pressure; Controller: PLC;		
			Setpoints: Desired temperature,		
			humidity, etc.		

1.2 AHU Design Configuration

AHUs can be customized to meet building requirements and come in two basic designs: Recirculation units and 100% Makeup Air Units.

1.2.1 Recirculation Units

Recycle a portion of indoor return air, mixing it with fresh outdoor air for conditioning.

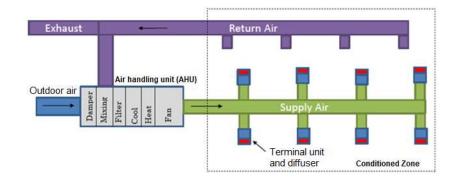
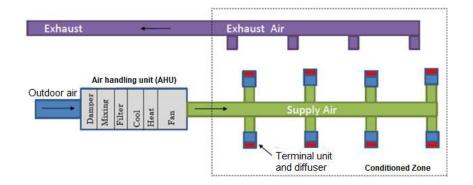



Figure 3. Recirculation Type AHU

1.2.2 100% Makeup Air Units

Exclusively handle fresh outdoor air without recirculating indoor air. Crucial for environments like hospitals, laboratories and cleanrooms.

Figure 4. 100% Outdoor Air AHU

Table 2. Recirculation Type Vs. 100% Outside Air AHU

	Parameter	Recirculation Type AHU	100% Outside Air AHU			
	Air Source	Mix of return air and outside air	Only fresh air, 100%, no			
$\mathbf{\nabla}$			recirculation.			
	Ventilation Rates	10-30% outside air, balance room	100% outdoor air, no recirculation.			
		air recirculation (return air).				
	Energy Efficiency	Generally, more energy-efficient	Lower, due to conditioning entire			
		due to heat recovery from return	fresh air volume.			
		air.				
	Indoor Air Quality (IAQ)	Moderate, depends on filtration	Superior, due to constant			
		and air changes. Recommended:	introduction of outdoor air.			
		Minimum MERV 8+ filters or	Recommended: Minimum MERV			
		higher for better IAQ.	13+ filtration to handle outdoor			
			contaminants.			
	Energy Recovery	Optional	Recommended for energy			
			efficiency (per ASHRAE 90.1).			
	Applications	Suitable for most residential and	Suitable for Labs, healthcare,			
		commercial buildings.	hazardous and high IAQ- spaces.			

1.3 AHU Selection

You need to consider the following parameters when selecting an AHU.

Table 3. Key Factors affecting AHU Selection

	Parameters	Rules of Thumb		
	Heating & Cooling Load	Calculated in BTU/hr. or tons; high latent loads need more coil		
$\mathbf{\overline{\mathbf{v}}}$		rows. Heating/cooling loads influences airflow rate and coil		
		size. High latent loads need more coil rows.		
	Airflow Rate	Determines AHU size and fan capacity; higher airflow needs		
		larger coils and cross-sectional area.		
	Filtration Level	Use MERV 8+ for pre-filters, MERV 13+ for fine filters to		
		enhance air quality.		
	Static Pressure	Typical range: 1-10 in. WG; impacts fan power and duct design.		
	Energy Efficiency	Optimize with short ducts, efficient fans, motors, and VFDs.		
	Noise Level	Control with sound attenuators, insulation, and air velocities		
		<1500 fpm (main), <800 fpm (branch).		

Table 4. Performance Standards & Codes

	Standard/Code	Application
0	ASHRAE Standard 62.1	Outdoor air ventilation for acceptable Indoor Air Quality
0	ASHRAE Standard 52.2	Filter efficiency ratings
0	ASHRAE Standard 90.1	Energy efficiency ratings for equipment (fan, motors, dampers etc.)
\bigcirc	AHRI 410/430	Standard for air handling units
0	AMCA 210	Standard for air handling units, including sound and vibration limits
\bigcirc	Eurovent	European standard for AHU performance and energy efficiency
0	NFPA 90	Installation of Air Conditioning and Ventilating Systems
\bigcirc	ISO 16814	International standard for AHU design and testing
\bigcirc	ISO 14001	Environmental Management System
\bigcirc	ISO 50001	Energy Management System
\bigcirc	SMACNA Standards	HVAC Systems and Equipment Duct design, installation, and testing.

1.4 Space Planning for AHUs

AHU is a bulky equipment and it's important that the space requirements are evaluated upfront while meeting clearance, access, and safety requirements. Here's what to consider:

	Factors	Rules of Thumb			
	Size & Configuration	Ensure AHU fits allocated space, considering dimensions and			
		special configurations.			
	Clearance	Maintain at least 36 inches for accessibility, maintenance, and			
		inspection.			
	Headroom	Verify adequate headroom for installation and ductwork			
		routing, especially in low-ceiling areas.			
	Access	Ensure easy access for installation and maintenance; check door			
		widths, hallways, and elevators.			
\bigcirc	Support	Provide a sturdy foundation or support to handle AHU weight.			
	Airflow & Ductwork	Optimize duct size, routing, and insulation to reduce pressure			
		drops and improve airflow.			
	System Integration	Coordinate with electrical, plumbing, and fire systems to			
		prevent conflicts and ensure integration.			
	Code Compliance	Follow local codes for installation, clearance, fire safety, and			
		energy efficiency.			

Table 5. AHU Space & Installation Considerations

1.5 Airflow Rate of the AHU

The AHU airflow rate depends on the sensible load (Q) and the temperature difference (ΔT) between supply and return air.

Equation 1. Airflow Rate

Airflow (CFM) =
$$\frac{\text{Sensible load (Q)}}{1.08 \text{ x} \Delta \text{T}}$$

Where:

- Q is the sensible cooling load in BTU/h.
- ΔT is the temperature difference between the desired room temperature and the supply air temperature from the AHU in °F.
- 1.08 is a constant based on the air density and specific heat of the air.

Table 6. Estimating Cooling Load and Airflow Rates

AHU Size/Capacity	Rules of Thumb						
Cooling Loads (Ton/sq. ft.)	1 Ton for ≈ 200 sq. ft. of floor area (thumb rule for conceptual						
	design). For modern energy-efficient buildings, 1 Ton may						
	cover up to 400–500 sq. ft.						
Airflow Rate (CFM/Ton)	400 CFM/Ton (comfort cooling), 350-400 CFM/Ton						
	(dehumidification and high latent load applications).						
Airflow Rate (CFM/sq. ft.)	1–2 CFM/sq. ft. (floor area), 1.2 CFM/sq. ft. for energy-efficient						
	buildings, consider 2 CFM for conceptual design.						

Table 7. Typical Cooling Loads and Airflow Rates for Various Buildings

		Air Conditioning Load			AHU Air flow Rates		
	Type of Building	(sq. ft/ton)			(CFM/sq. ft)		
		Low	Medium	High	Low	Medium	High
0	Apartments, Hi Rise	500	425	350	0.8	1.0	1.3
0	Auditoriums, Churches, Theaters	400	300	150	1.0	1.8	2.5
0	Educational Facilities	400	300	200	0.8	1.2	1.8
0	Factories - Light Manufacturing	350	250	150	1.2	1.6	2.0
0	Factories - Heaving Manufacturing	150	100	75	2.5	3.5	4.5
C	Hospitals - Patient Rooms	350	250	180	0.5	0.75	0.9
0	Hospitals - Public Areas	300	250	150	0.8	1.0	1.1
0	Hotels, Motels, Dormitories	500	400	300	0.9	1.2	1.4
0	Libraries & Museums	400	350	300	0.9	1.0	1.1
0	Office Buildings	500	400	300	0.7	0.9	1.2
0	Residential Buildings	600	400	300	0.5	0.7	1.0
0	Beauty & Barber Shops	300	250	200	0.9	1.3	2.0
0	Department Stores	500	400	300	0.9	1.4	2.0

You need to purchase this course to continue viewing this document.